PhD student on Scalable Video Analysis on low-power GPU architectures

Jouw rol

Project description
The advances in video analytics are going in a rapid pace, especially since the introduction of deep learning techniques. Deep learning is based on a neural network comprising multiple layers of connected neurons that can be trained to classify input signals. In the domain of video analysis, this technique is used to detect and recognize or classify object. The neural network has a huge amount of inherent parallelism that can be exploited by parallel processing units on different levels, but due to the interconnections between the neurons and these layers, this is not trivial.

ViNotion uses state-of-the-art deep learning video analysis techniques to develop innovative real-time surveillance systems for pedestrian, traffic and vessel monitoring ( The newest video analysis techniques allow sophisticated traffic management to improve the safety on the roads and the efficiency of human observation in traffic control centers.

Surveillance systems to control traffic on highways typically contain thousands of cameras to collect data and to control the traffic. To make the video analysis scalable and to limit the bandwidth that is needed for video streaming, video analysis in or close to the camera reduces the visual data to the essential information that is needed for the traffic operation. This implies embedded analytics into the camera or an outdoor cabinet. Moreover, in many use cases, no wired power source is available. Hence, there is a need for low power implementations that can operate on solar energy or portable batteries.

The PhD will research the architecture of deep-learning classification algorithms and find possibilities to systematically exploit the parallelism in a scalable fashion. On the hardware side, parallelism on instruction level, on task/process level, but also on multi-core and multiprocessor level should be considered. On the software side, data partitioning should be investigated besides the functional partitioning of neurons, layers and total neural network w.r.t. other video processing functions in the system. For complex problems that cannot be computed in real-time on a single GPU, an approach that scales to multiple GPUs is desired.

Wie we zoeken

• A master's degree in Computer Science, Electrical Engineering or related disciplines with excellent grades.
• Excellent knowledge of signal processing and computer architectures.
• Solid programming skills (e.g., in C or C++).
• Strong interest in embedded computing cores such as ARM, GPU.
• A team player that enjoys to work in multicultural teams.
• Good communication and organization skills.
• Excellent English language skills (writing and presenting).
• Basic Dutch language skills are desired to fit well in the Dutch team at ViNotion.

Je wordt gedreven door:


& Creativiteit

& Kennis

Wat we bieden

• A gross monthly salary between EUR 2.500 (first year) and EUR 3.000 (last year).
• Additionally, 8% holiday and end-of-year annual supplements.
• A minimum of 27 holidays per year (excluding bank holidays, for a full-time employment of 40 hrs/week)

If interested, please send the following:
• a detailed curriculum vitae, a letter of motivation and portfolio with relevant work;
• a cover letter explaining your motivation and suitability for the position;
• a detailed Curriculum Vitae (including a list of publications and key achievements in research project(s));
• contact information of two references;
• copies of diplomas with course grades;

Over ons

Eindhoven University of Technology (TU/e)
Eindhoven University of Technology (TU/e) is a world-leading research university specializing in engineering science & technology. The Department of Electrical Engineering is responsible for research and education in Electrical Engineering. The discipline covers technologies and electrical phenomena involved in computer engineering, information processing, energy transfer and telecommunication. The department strives for societal relevance through an emphasis on the fields of smart sustainable systems, the connected world and care & cure. The TU/e is the world’s best-performing research university in terms of research cooperation with industry (#1 since 2009).
The Electronic Systems (ES) group consists of six full professors, two associate professors, eight assistant professors, several postdocs, about 30 PDEng and PhD candidates and support staff. The ES group is world-renowned for its design automation and embedded systems research. It is our ambition to provide a scientific basis for design trajectories of electronic systems, ranging from digital circuits to cyber-physical systems. The trajectories are constructive and lead to high quality, cost-effective systems with predictable properties (functionality, timing, reliability, power dissipation, and cost). Design trajectories for applications that have strict real-time requirements and stringent power constraints are an explicit focus point of the group. Within this area, prof.dr. H. Corporaal and S. Stuijk have developed various novel power efficient computer architectures and their associated compilation trajectories.
The ZERO-ARM project team is designed to combine extensive knowledge in the key fields (video processing, compilers and computer architectures). The project team includes industrial partner ViNotion. As part of this project, the PhD candidate will work closely with these industrial partners and will be located 4 days per week – depending on the need – at the office of the partner, to ensure that the developed architecture fits the needs of ViNotion and to learn about the video analysis algorithms.

ViNotion is an innovative development company for computer vision applications, focusing on software development. The company has 10-15 employees, of which most have a master or PhD degree in advanced signal processing. For its R&D, ViNotion works closely together with the Eindhoven University of Technology that is located 3 km from the office.
ViNotion offers products and services for crowd analysis and traffic analysis with intelligent video camera systems. The products and services can not only count but are also able to distinguish pedestrians, bicycles and a multitude of different vehicle types, measure speed, density and GPS positions, among others.
These products are being applied for city marketing, retail footfall, crowd and event management, train stations, mobility reporting, urban planning, traffic control, tolling, etc. As a service, ViNotion provides mobility services and offers crowd and traffic analysis systems.

Onze locatie
Daalakkersweg 2-58 Eindhoven

Kunnen we ergens mee helpen?

Neem contact op via (+31) 020 - 530 0500 (NL) of via (+32) 038 - 081 758 (BE)
Van maandag tot en met vrijdag tussen 08:00 uur en 18:00 uur.